Code: CE2T4

I B.Tech - II Semester - Regular/Supplementary Examinations April - 2018

ENGINEERING MECHANICS
 (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Explain free body diagram with example.
b) State the laws of dry friction.
c) Explain coefficient of friction and Angle of friction.
d) Find the centroid of a Rectangle from basic principles.
e) Find the moment of inertia of a right angled triangle from basic principles.
f) Determine the mass moment of inertia of a circular ring or hoop of mass ' m ' and radius 'r' about centroidal axes.
g) Find the reactions for a simply supported beam of length 10 m subjected to a point load 10 N at mid point by applying the virtual work principle.
h) An airplane while taking off moves with a constant acceleration over a runway of 400 m in 8 seconds. Determine the velocity with which it takes off.
i) State D'Alembert's principle.
j) Define time of flight and range when a particle is projected on an inclined plane.
k) Define work done by a force acting on rigid body.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Two identical rollers, each of weight 100 N , are supported by an inclined plane and a vertical wall as shown in figure below. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C .

b) Briefly discuss about wedge friction and its applications.

4 M
3. a) Find the centroid of the plane lamina shown in Figure.

b) Find the moment of inertia of the lamina about x-axis shown in figure.

4. a) Derive the expression for the moment of inertia of a homogeneous right circular cone of mass ' m ', base radius ' r ' and altitude ' h ' with respect to geometrical axis.
b) Explain the principle of virtual work and virtual displacement.
5. a) A burglar's car had a start with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. A police vigilant came in a van to the spot at a velocity of 20 m / s after 3.75 seconds and continued to chase the burglar's
car with uniform velocity. Find the time in which the police van will overtake the burglar's car.
b) A 50 kg block kept on the top of a 15^{0} sloping surface is pushed down the plane with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If coefficient of kinetic friction is 0.4 , determine the distance travelled by the block and the time it will take as it comes to rest.
6. a) Discuss about projectile motion. Derive the general equation of projectile motion and for max height of projectile motion.
b) A flywheel rotating at 300 rpm reduces its speed to 240 rpm while making 10 complete revolutions. Determine its angular retardation assuming it to be uniform. What is its speed after 3 seconds assuming the same retardation ? Also determine how much time is taken to come to a stop from a speed of 300 rpm ?

